Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 715-728, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271957

RESUMO

A gelled Pickering emulsion system was fabricated by first stabilizing linseed oil droplets in water with dialdehyde cellulose nanocrystals (DACNCs) and then cross-linking with cystamine. Cross-linking of the DACNCs was shown to occur by a reaction between the amine groups on cystamine and the aldehyde groups on the CNCs, causing gelation of the nanocellulose suspension. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the cystamine-cross-linked CNCs (cysCNCs), demonstrating their presence. Transmission electron microscopy images evidenced that cross-linking between cysCNCs took place. This cross-linking was utilized in a linseed oil-in-water Pickering emulsion system, creating a novel gelled Pickering emulsion system. The rheological properties of both DACNC suspensions and nanocellulose-stabilized Pickering emulsions were monitored during the cross-linking reaction. Dynamic light scattering and confocal laser scanning microscopy (CLSM) of the Pickering emulsion before gelling imaged CNC-stabilized oil droplets along with isolated CNC rods and CNC clusters, which had not been adsorbed to the oil droplet surfaces. Atomic force microscopy imaging of the air-dried gelled Pickering emulsion also demonstrated the presence of free CNCs alongside the oil droplets and the cross-linked CNC network directly at the oil-water interface on the oil droplet surfaces. Finally, these gelled Pickering emulsions were mixed with poly(vinyl alcohol) solutions and fabricated into self-healing composite coating systems. These self-healing composite coatings were then scratched and viewed under both an optical microscope and a scanning electron microscope before and after self-healing. The linseed oil was demonstrated to leak into the scratches, healing the gap automatically and giving a practical approach for a variety of potential applications.


Assuntos
Cistamina , Nanopartículas , Emulsões/química , Óleo de Semente do Linho , Celulose/química , Nanopartículas/química , Água/química
2.
ACS Appl Mater Interfaces ; 15(38): 44711-44721, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37715711

RESUMO

Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Carbono/química , Espectroscopia Fotoeletrônica , Corantes Fluorescentes/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Carbohydr Polym ; 314: 120943, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173032

RESUMO

It is generally acknowledged that to advance the application of cellulose nanofibrils (CNFs) in product formulations, challenges associated with the drying and redispersion of this material must be addressed. Despite increased research efforts in this area, these interventions still involve the use of additives or conventional drying technologies, which both have the capacity to drive up the cost of the final CNF powders. Herein, we prepared dried and redispersible CNF powders with varying surface functionalities without the use of additives nor conventional drying technologies. Rapid drying in air was achieved after liquid phase exchange from water to isopropyl alcohol. The surface properties, morphology and thermal stabilities were the same for the never-dried and redispersed forms. The rheological properties of the CNFs were also unaffected after drying and redispersion of unmodified and organic acid modified materials. However, for 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated oxidised CNFs with higher surface charge and longer fibrils, the storage modulus could not be recovered to the never-dried state because of the possible non-selective reduction in length upon redispersion. Nevertheless, this method provides an effective and low-cost process for the drying and redispersion of unmodified and surface modified CNFs.

4.
ACS Appl Polym Mater ; 4(11): 8684-8693, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36405305

RESUMO

Conventional composite formulation of cellulose nanocrystals (CNCs) with thermoplastics involves melt compounding or in situ polymerisation. In this rather unconventional approach, polypropylene (PP) microparticles were finely suspended and stabilized, at varying weight loadings, in aqueous suspensions of amphiphilic CNCs to enable adsorption of the nanoparticles onto the thermoplastic. In order to achieve these suspensions, CNCs were modified with either octyl or hexadecyl groups. These modifications imparted hydrophobic properties to the CNCs, hence increasing interfacial adhesion to the PP microparticles. The modification, however, also retained the sulfate half ester groups that ensured dispersibility in aqueous media. The CNCs were evidently coated on the PP microparticles as revealed by confocal microscope imaging and had no detrimental effect on the melt properties of the PP-based composites. The approach is demonstrated to increase the Young's moduli of CNC-thermoplastic composites prepared in optimum suspension loadings of 0.5 wt. % octyl-modified and 0.1 wt % hexadecyl-modified CNCs. This procedure can be extended to other thermoplastics as the ability to aqueously process these composites is a major step forward in the drive for more sustainable manufacturing.

5.
Faraday Discuss ; 231(0): 81-96, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34196340

RESUMO

Introducing heterostructures to graphitic carbon nitrides (g-C3N4) can improve the activity of visible-light-driven catalysts for the efficient treatment of multiple toxic pollutants in water. Here, we report for the first time that a complex material can be constructed from oxygen-doped g-C3N4 and a MIL-53(Fe) metal-organic framework using facile hydrothermal synthesis and recycled polyethylene terephthalate from plastic waste. The novel multi-walled nanotube structure of the O-g-C3N4/MIL-53(Fe) composite, which enables the unique interfacial charge transfer at the heterojunction, showed an obvious enhancement in the separation efficiency of the photochemical electron-hole pairs. This resulted in a narrow bandgap energy (2.30 eV, compared to 2.55 eV in O-g-C3N4), high photocurrent intensity (0.17 mA cm-2, compared to 0.12 mA cm-2 and 0.09 mA cm-2 in MIL-53(Fe) and O-g-C3N4, respectively) and excellent catalytic performance in the photodegradation of anionic azo dyes (95% for RR 195 and 99% for RY 145 degraded after 4 h, and only a minor change in the efficiency observed after four consecutive tests). These results demonstrate the development of new catalysts made from waste feedstocks that show high stability, ease of fabrication and can operate in natural light for environmental remediation.

6.
J Am Chem Soc ; 143(15): 5805-5814, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33851530

RESUMO

Although micelles derived from the solution self-assembly of amphiphilic molecules and polymers have been prepared with a wide variety of shapes, examples with well-defined branched structures have remained elusive. We describe a divergent, directed self-assembly approach to low dispersity dendritic micelles with a high degree of structural perfection and tailorable branch numbers and generations. We use block copolymer amphiphiles as precursors and a crystallization-driven seeded growth approach whereby the termini of fiber-like micelles function as branching sites. Different dendrimeric generations are accessible by adjusting the ratio of added unimers to pre-existing seed micelles where the branch positions are determined by the reduced coronal chain grafting density on the surface of the micelle crystalline core. We demonstrate the spatially defined decoration of the assemblies with emissive nanoparticles and utility of the resulting hybrids as fluorescent sensors for anions where the dendritic architecture enables ultrahigh sensitivity.


Assuntos
Dendrímeros/química , Micelas , Ânions/química , Cristalização , Compostos Ferrosos/química , Limite de Detecção , Microscopia de Força Atômica , Polivinil/química , Pontos Quânticos/química , Silanos/química , Espectrometria de Fluorescência , Sulfetos/análise , Propriedades de Superfície
7.
Nat Chem ; 12(12): 1150-1156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219362

RESUMO

The creation of efficient artificial systems that mimic natural photosynthesis represents a key current challenge. Here, we describe a high-performance recyclable photocatalytic core-shell nanofibre system that integrates a cobalt catalyst and a photosensitizer in close proximity for hydrogen production from water using visible light. The composition, microstructure and dimensions-and thereby the catalytic activity-of the nanofibres were controlled through living crystallization-driven self-assembly. In this seeded growth strategy, block copolymers with crystallizable core-forming blocks and functional coronal segments were coassembled into low-dispersity, one-dimensional architectures. Under optimized conditions, the nanofibres promote the photocatalytic production of hydrogen from water with an overall quantum yield for solar energy conversion to hydrogen gas of ~4.0% (with a turnover number of >7,000 over 5 h, a frequency of >1,400 h-1 and a H2 production rate of >0.327 µmol h-1 with 1.34 µg of catalytic polymer (that is, >244,300 µmol h-1 g-1 of catalytic polymer)).

8.
J Colloid Interface Sci ; 571: 398-411, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32247192

RESUMO

HYPOTHESIS: Thermal through-air bonding process and slip additive treatment affect fibre surface structure and nanomechanical properties, which is extremely difficult to characterise on a single-fibre level. EXPERIMENTS: Optical microscopy (OM) was applied to study the effect of air-through bonding, spunbonding, and crimping on fibre geometry and general appearance. A "spray-on" method developed here using a custom-designed fibre holder allowed a direct measurement of static contact angles of water droplets on single fibres. Scanning electron microscopy (SEM) showed different morphological features on the fibre due to the nonwoven fabric-making process and additive treatment. Synchrotron X-ray diffraction (XRD) was applied to study the effect of erucamide presence on polypropylene (PP) fibre crystal structure. Atomic force microscopy (AFM) imaging provided complementary characterization of fibre topographic features such as average surface roughness, along with adhesion force mapping by quantitative nanomechanical (QNM) AFM imaging. FINDINGS: Our results show the effect of nonwoven making process and surfactant additive treatment on the fibre surface structure and nanomechanical properties. Wettability experiment on the single fibre revealed the hydrophobic nature of all the synthetic fibres. For polyethylene/polyethylene terephthalate (PE/PET) bicomponent single fibres, the polyethylene sheath was found to possess fibrillar microstructure - typical for drawn fibres, whereas the fibres entangled in nonwoven fabrics exhibited a uniform, porous surface morphology attributed to the through-air process. Adhesion force mapping allowed us to correlate fibre nanomechanical properties with its topography, with surface pore interiors showing higher adhesion than the flat polyethylene region. Furthermore, on the polypropylene (PP) fibre surface treated with erucamide (13-cis-docosenamide; a common slip additive used in polyolefin film processing), we observed overlapping multilayers consisting of 4 nm erucamide bilayers, attributed to the slip additive migration onto the fibre surface. XRD measurements of the fibres did not detect the presence of erucamide; however, AFM imaging provided evidence for its migration to the fibre surface, imparting influence on the surface structure and adhesive properties of the fibre. Single-fibre AFM imaging also allowed a detailed analysis of different surface roughness parameters, revealing that both through-air bonding in the nonwoven making process and the slip additive (erucamide) treatment affected the fibre surface roughness. The wettability, surface morphology, and adhesion properties from this study, obtained with unprecedented resolution and details on single fibres, are valuable to informing rational design of fibre processing for fibre optimal properties, critically important in many industrial applications.

9.
ACS Appl Bio Mater ; 3(8): 5253-5262, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021700

RESUMO

Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalized chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behavior, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g., endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm, which could be further functionalized and showed no significant toxicity to human dermofibroblast cells.

10.
J Am Chem Soc ; 141(48): 19088-19098, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31657915

RESUMO

Fiber-like micelles based on biodegradable and biocompatible polymers exhibit considerable promise for applications in nanomedicine, but until recently no convenient methods were available to prepare samples with uniform and controllable dimensions and spatial control of functionality. "Living" crystallization-driven self-assembly (CDSA) is a seeded growth method of growing importance for the preparation of uniform 1D and 2D core-shell nanoparticles from a range of crystallizable polymeric amphiphiles. However, in the case of poly(l-lactide) (PLLA), arguably the most widely utilized biodegradable polymer as the crystallizable core-forming block, the controlled formation of uniform fiber-like structures over a substantial range of lengths by "living" CDSA has been a major challenge. Herein, we demonstrate that via simple modulation of the solvent conditions via the addition of trifluoroethanol (TFE), DMSO, DMF and acetone, uniform fiber-like nanoparticles from PLLA diblock copolymers with controlled lengths up to 1 µm can be prepared. The probable mechanism involves improved unimer solvation by a reduction of hydrogen bonding interactions among PLLA chains. We provide evidence that this minimizes undesirable unimer aggregation which otherwise favors self-nucleation that competes with epitaxial crystallization from seed termini. This approach has also allowed the formation of well-defined segmented block comicelles with PLLA cores via the sequential seeded-growth of PLLA block copolymers with different corona-forming blocks.


Assuntos
Resinas Acrílicas/química , Micelas , Nanopartículas/química , Poliésteres/química , Cristalização , Ligação de Hidrogênio , Nanopartículas/ultraestrutura , Tamanho da Partícula , Solubilidade , Solventes
11.
Sci Rep ; 9(1): 10887, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350438

RESUMO

Introducing hierarchical pore structure to microporous materials such as metal-organic frameworks (MOFs) can be beneficial for reactions where the rate of reaction is limited by low rates of diffusion or high pressure drop. This advantageous pore structure can be obtained by defect formation, mostly via post-synthetic acid etching, which has been studied extensively on water-stable MOFs. Here we show that a water-unstable HKUST-1 MOF can also be modified in a corresponding manner by using phosphoric acid as a size-selective etching agent and a mixture of dimethyl sulfoxide and methanol as a dilute solvent. Interestingly, we demonstrate that the etching process which is time- and acidity- dependent, can result in formation of defective HKUST-1 with extra interconnected hexagonal macropores without compromising on the bulk crystallinity. These findings suggest an intelligent scalable synthetic method for formation of hierarchical porosity in MOFs that are prone to hydrolysis, for improved molecular accessibility and diffusion for catalysis.

12.
Angew Chem Int Ed Engl ; 57(26): 7780-7784, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29683257

RESUMO

The fabrication of stable colloidosomes derived from water-in-water Pickering-like emulsions are described that were produced by addition of fluorescent amine-modified polystyrene latex beads to an aqueous two-phase system consisting of dextran-enriched droplets dispersed in a PEG-enriched continuous phase. Addition of polyacrylic acid followed by carbodiimide-induced crosslinking with dextran produces hydrogelled droplets capable of reversible swelling and selective molecular uptake and exclusion. Colloidosomes produced specifically in all-water systems could offer new opportunities in microencapsulation and the bottom-up construction of synthetic protocells.

13.
Langmuir ; 29(10): 3246-51, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23410092

RESUMO

This Article describes the synthesis and detailed characterization of a new set of magnetic surfactants containing lanthanide metal counterions. SQUID magnetometry has been used to elucidate the magnetic phase behavior, and small-angle neutron scattering (SANS) provides evidence of micellar aggregation in aqueous media. This study also reveals that for cationic surfactants in aqueous systems there appears to be no significant increase in magnetic susceptibility after micellization.

14.
Nanotechnology ; 23(41): 415601, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23010993

RESUMO

The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe(3)O(4)-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe(3)O(4) nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe(3)O(4) nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.


Assuntos
Apoferritinas/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Animais , Cristalização , Cavalos , Nanotecnologia , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
J Am Chem Soc ; 133(23): 8903-13, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21591609

RESUMO

In depth studies of the use of electron transfer reactions as a means to control the self-assembly of diblock copolymers with an electroactive metalloblock are reported. Specifically, the redox-triggered self-assembly of a series of polystyrene-block-polyferrocenylsilane (PS-b-PFS) diblock copolymers in dichloromethane solution is described. In the case of the amorphous polystyrene(n)-b-poly(ferrocenylphenylmethylsilane)(m) diblock copolymers (PS(n)-b-PFMPS(m): n = 548, m = 73; n = 71, m = 165; where n and m are the number-averaged degrees of polymerization), spherical micelles with an oxidized PFS core and a PS corona were formed upon oxidation of more than 50% of the ferrocenyl units by [N(C(6)H(4)Br-4)(3)][SbX(6)] (X = Cl, F). Analogous block copolymers containing a poly(ferrocenylethylmethylsilane) (PFEMS) metalloblock, which has a lower glass transition temperature, behaved similarly. However, in contrast, on replacement of the amorphous metallopolymer blocks by semicrystalline poly(ferrocenyldimethylsilane) (PFDMS) segments, a change in the observed morphology was detected with the formation of ribbon-like micelles upon oxidation of PS(535)-b-PFDMS(103) above the same threshold value. Again the coronas consisted of fully solvated PS and the core consisted of partially to fully oxidized PFS associated with the counteranions. When oxidation was performed with [N(C(6)H(4)Br-4)(3)][SbF(6)], reduction of the cores of the spherical or ribbon-like micelles with [Co(η-C(5)Me(5))(2)] enabled full recovery of the neutral chains and no significant chain scission was detected.

16.
ACS Nano ; 2(2): 263-70, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206626

RESUMO

The pyrolysis of cylinder-forming samples of the diblock copolymer polystyrene-block-poly(ferrocenylethylmethylsilane) (PS-b-PFEMS) in bulk and in thin films has confirmed that these materials are useful for the generation of semi-ordered arrays of C/SiC ceramics containing Fe nanoparticles which are derived from the organometallic domains. In many cases, the ceramic mass yields were predictable and produced ceramics bearing a monomodal distribution of iron nanoparticles due to the nanoscaled structure of the preceramic PFEMS domains. The pyrolysis of thin films stabilized by cross-linking the PS domains with UV light demonstrated high areal yields, improved shape retention, and the presence of cylinder-centered magnetic nanoparticles.


Assuntos
Cristalização/métodos , Magnetismo/métodos , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silanos/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...